Course Syllabus for "From Eye to Al Digital Phantoms for Medical Imaging"

High School / Undergraduate Students

1. Basic Information about the Course

Course Number	TBD	Course	TBD	Offering	C. Light Data		
		Code		Department	Science		
					Department		
Course Title	From Eye	From Eye to AI: Digital Phantoms for Medical Imaging					
	Learn how	Learn how to build and simulate digital phantoms of the human eye					
Course	using 3D	tools. Discove	er how these	e virtual mode	els are used in		
Objectives	healthcare	healthcare to help doctors understand medical conditions and help					
	engineers train AI systems for medical imaging.						

	By the end of th	nis course, stud	dents will be	e able to:			
	Use 3D modeling tools like Unity3D to create and render						
	anatom	ical structures	(e.g., the e	ye).			
	Apply v	ersion control	systems (V	CS) to manage	and track their		
	C# code	э.					
	Set up	Continuous In	tegration/C	ontinuous Depl	oyment (CI/CD)		
	pipeline	s to automate	building and	d testing of proj	ects.		
Expected	 Underst 	Understand and implement basic Unity design patterns (such as					
Learning Outcomes	Model-\	/iew-Controlle	er).				
	• Transla	te anatomy an	d biology d	ata into 3D stru	ictures, bridging		
	science	and technolog	gy.				
	Simulate medical imaging data with high fidelity to support						
	doctors and AI engineers.						
	Generate synthetic datasets that can be used to train Al models						
	in healtl	hcare.					
Course	Professor Joe >	King					
Coordinator							
Teaching Team	TBD						
		Total Credit	32		32/ 4/		
	Credits	Hours		Course	<u>16</u>		
Credit Hours	TBD (18)	(Lecture		Schedule of	In-class		
32		Hours +		Hours	Lecture Hours/Lab		
		Practical			Hours/Self		
		Hours)			Study Hours		
Course	Undergraduate	(including high	n-school stu	dents)			
Classification							
Course Type	Application orie	nted					

Language of	Course materials, slides, and technical terminology will be provided in
Instruction	English, and instruction will be delivered in English.
Course Highlights	In this course, students will explore the exciting world of Unity3D, using powerful 3D graphics tools to build and simulate a digital phantom of the human eye. These virtual models aren't just fun to create, they are extremely valuable in the medical and healthcare industry, helping doctors understand complex conditions and giving engineers high-quality data to train Al models for medical imaging. Along the way, students will also pick up real-world coding, testing, and teamwork skills used by professional software engineers.
Assessment	Examination (x) Comprehensive evaluation (x)
Methods	Mid-term exam + final project
Textbooks and References	Unity in Action: Multiplatform Game Development in C# by Joseph Hocking (great intro, student-friendly). An Introduction to Medical Imaging: Physics, Engineering and Clinical Applications by Nadine Barrie Smith & Andrew Webb
Prerequisites	Introduction to Programming (C Sharp, Python) Algebra & Geometry Introduction to Machine Learning / Data Science (recommended, not mandatory)
Applicable Schools and	School of Medicine (Clinical Medicine, Public Health, Medical Imaging, etc.) Department of Computer Science and Technology Department of Biomedical Engineering, Engineering Physics
Schools and Majors	Department of Automation Department of Electronic Engineering And other related majors with interest in the intersection of AI and healthcare.

2. Course Content Overview

This course introduces students to the exciting intersection of 3D graphics, medical science, and artificial intelligence. Using Unity3D, students will build and simulate digital phantoms of the human eye and other anatomy, learning how these virtual models are used in healthcare to support doctors and train AI systems for medical imaging.

Course Description

Over 16 classes, students will explore how modern 3D modeling tools like Unity3D can be applied beyond gaming to solve real problems in medicine. Starting with the basics of Unity and C# programming, students will learn how to design, render, and simulate anatomical structures — with a focus on building a **digital eye phantom**. Along the way, they will connect biology and anatomy to 3D structures, practice software engineering skills such as version control, unit testing, and CI/CD, and discover how digital phantoms are used to generate high-quality data for Al training in medical imaging. The course combines lectures, hands-on labs, and a final project where students present their own digital phantom simulations, demonstrating how creative coding and medical science come together to shape the future of healthcare.

3. Grading Criteria

Weighting	Class Participation 10%: Engagement in discussions and teamwork
(%)	Homework & Labs 20%: Timeliness, accuracy, completeness
	Quizzes: 10% Understanding of core concepts
	Midterm Exam: 20% Comprehensive test of knowledge & application
	Final Project 40%: Design (10%) + Report (20%) + Presentation (10%)
	Total: 100%

4. Teaching Arrangement

Lecture	Content	Teaching Elements	Credit Hour (45 min each credit hour)	Lab hour	Self-study
1	Introduction & Course Overview	Welcome, course objectives, expected outcomes Why digital phantoms matter in medicine and	2		

		T		1	ı	
		Al				
		Intro to Unity3D				
		and tour of the				
		3D				
		environment				
2	Unity3D Basics	Setting up	2			
		projects and				
		Unity interface				
		Importing 3D				
		assets and				
		basic rendering				
		Hands-on:				
		create your first				
		3D object!				
		-				
3	Anatomy Meets 3D	Introduction to	2			
		eye anatomy				
		(focus on				
		structures we'll				
		model)				
		How to				
		translate				
		anatomy data				
		into 3D models				
		into ob modelo				
		Demo: simple				
		3D eye				
		structure in				
		Unity				
4	Coding in Unity (C#	Introduction to	2			
-	Basics)	C# scripting in	_			
	540100)	Unity				
		, J,				
		Variables,				
		functions, and				
		controlling				
		objects				

	T	T		1	1
		Hands-on: make the eye			
		model			
		interactive			
5	Design Patterns in	Intro to	2		
	Unity	Model–View–C			
		ontroller (MVC) in Unity			
		in Only			
		Why design			
		patterns matter			
		in simulations			
		Lab: apply MVC to control			
		eye movement			
		Cyc movement			
6	Adding Realism:	Rendering	2		
	Materials & Lighting	basics:			
		textures,			
		shaders,			
		lighting			
		Simulating			
		realistic			
		anatomy			
		appearance			
		Hands-on:			
		make your eye look alive			
		.con anvo			
7	Medical Imaging &	What are digital	2		
	Digital Phantoms	phantoms?			
		Why they			
		matter for			
		imaging			
		Examples of			
		eye phantoms			
		in healthcare			
		Lab: simulate			

		imaging of your digital eye			
8	Version Control with Git & GitHub	Introduction to VCS (Git) and repositories Committing, branching, and collaboration Hands-on: push your Unity project to GitHub	2		
9	Mid-Term Exam	Covers Unity basics, C# scripting, MVC, anatomy-to-3D translation, and VCS	2		
10	Al & Synthetic Data in Healthcare	How digital phantoms generate training data for Al Case studies in medical Al Hands-on: export phantom data for simple Al use	2		
11	Software Quality: Unit Testing	What are unit tests and why they matter Writing simple tests in C# for Unity scripts	2		

		Hands-on: test your eye simulation code			
12	Automated Testing & CI/CD	Introduction to Continuous Integration & Deployment Setting up automated builds and tests (GitHub Actions or similar) Demo: run automated tests on Unity project	2		
13	Advanced Simulation Fidelity	How to improve realism in digital phantoms Basics of physics simulation in Unity Hands-on: simulate light interaction with the eye	2		
14	Connecting Biology to 3D Structures	Integrating anatomy/biolog y data into Unity Preparing your project for real-world	2		

		medical uses			
		medical uses			
		Lab: expand			
		your phantom			
		with biological			
		realism			
15	Final Project Workshop	In-class project	2		
		building			
		session			
		Instructor +			
		peers give			
		feedback and			
		help troubleshoot			
		troublesmoot			
		Prepare for			
		project			
		presentations			
16	Final Project	Students	2		
	Presentations	present their			
		digital phantom			
		projects			
		Each			
		student/team			
		explains their			
		model,			
		simulation, and			
		Al/data			
		applications			
		Peer +			
		instructor			
		feedback			
Total	Lecture Credit Hours		Lab	Self-Stu	
credit	28		Credit	dy Hours	
hours			Hours	16 (final	
32			4	project)	
			(worksho	- 1	
			-		

	presentat		
	ions)		